0=24x+6x^2+1

Simple and best practice solution for 0=24x+6x^2+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=24x+6x^2+1 equation:



0=24x+6x^2+1
We move all terms to the left:
0-(24x+6x^2+1)=0
We add all the numbers together, and all the variables
-(24x+6x^2+1)=0
We get rid of parentheses
-6x^2-24x-1=0
a = -6; b = -24; c = -1;
Δ = b2-4ac
Δ = -242-4·(-6)·(-1)
Δ = 552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{552}=\sqrt{4*138}=\sqrt{4}*\sqrt{138}=2\sqrt{138}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{138}}{2*-6}=\frac{24-2\sqrt{138}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{138}}{2*-6}=\frac{24+2\sqrt{138}}{-12} $

See similar equations:

| F(x)=-26 | | 5.5(t-7)-7.4=7(t+0.5)-3.1 | | (1/8)t-(1/32)+(1/2)t=(1/2)+t | | (19/32)t=(1/2)+t | | 5/8t-t=17/32 | | 6x+2=2x+10= | | 6(3-a)=42 | | 4(5y+-3)=-12 | | 4(5y=3)=-12 | | 12000=3400t+600 | | 5x-11+3x=6+8x-17 | | 61-o=14 | | 238=2w+4w-8 | | 39+5x=5-(x+4) | | f+5=2f-3 | | x+4/x-1=6/9 | | F(3x+5)=2x^2-3+5 | | 4n=1.75 | | 1/2x+1=3/2x-1/2 | | (1/x)=0.0143 | | 5(3x+6)-8=232 | | (2+3x)4=32 | | (x/8)+(x/4)=7 | | (2+3x)5=32 | | 9x-(3x+2)=9x-47 | | 7x-(6x+7)=6x-37 | | 900/y-2y=15 | | (x/2)-(1/4)=(3/8) | | 5x-10=-3x | | −39z+38=−5z−22 | | 10u=8u+10 | | 2.5+1.43x=3.1 |

Equations solver categories